Matrex Internal Structure

Table of Contents

MatreX INternal SIIUCIULE............oooiiiiiiiiiiieeeeeeeeeeeeeee e e e e e e e e e e e e eeeeeeaeeeeeeeeeeeeeaes 1
INTIOAUCTION.cciiiiiiiieieeeeee ettt e e e e e e e es e et eeeeeeeeeeeesessasarareeeeeas 1
(€3 06) o T 1 I s (o111 ¢ 1
N o TSI AN od 501 6 L0 T 2
The API module 1te€mMS CONMECTIONS.uuueeeieeeeeeieiiiiieeeeeeeeieee e e e e e eeeeeeeeeee e eees 3
The functions calculation OTAET...............evvveiiiiiieiiiiii e e e e e e eeeeeeas 6
The API-GUI modules it€ms CONNECTIONS.uuuuueieeeeeeeeieieeeeieeiieeeeeeeeeeeeeeeeeeesrnnnes 7
How the API module uses the Functions library...........cc.ccccooviiiiiiiniiinieee 9

Introduction

The purpose of this document is to give a correct vision of the internal architecture of
Matrex, for the following purposes:

for any user to understand how the system work; it can be useful for example
when the system appears like not behaving correctly

for any user to work with the client/server architecture that will be available in
version 2.0

as a start for developers to use the API module directly, without the GUI

Since it serves these different purposes the document is technical, but not very detailed (it
does not show code, for example) .

For who wants to know more, the Matrex javadoc is available.

Global structure

Matrex is composed internally by 3 modules:

The APL, i.e. the matrex_api.jar library, containing the classes in the matrex.item
package. It is the kernel, the engine of Matrex. It is totally independent by the
other two (it can potentially work alone).

The Functions, i.e. the matrex_fun.jar library, containing the classes in the
matrex.fun package, which implement the [Function interface. Each class contains
the code that implements a certain function template (for example the code to
calculate exp, inverse or variance).

The GUI, i.e. the matrex_gui.jar library, containing the classes in the matrex.gui
package. It is the graphical interfac for the API module.

GUI

Save, add, u%date, remove

Call to Functions

IR calculate code

The API module

The following pictures show the business objects of the API module and their
relationships.

Lets speak about machines. A machine represents a process that runs Matrex projects.

In version 1.0 there is only one machine, the Matrex desktop itself. From version 2.0 each
Matrex desktop will be able to connect to other Matrex servers, and therefore to work
with several machines in the same time.

Each machine can run several projects:

Machine

v

Project

A project contains all the items to solve a specific problem. In detail, a project contains:
e matrices (Matrix class+subclasses)
e functions (FunctionHandler)

e presentations (Presentations class)

e charts (Chart class+subclasses)

e timers (Timer class):

| Function

Project

= Timer

The API module items connections
The items in a project are connected with each other:
e directly one objects contains references to other objects and knows them.

e through the observer/notifier pattern (same as the event listeners in java). For example,
there are items in the project (functions, charts, presentations) which need to be
recalculated or refreshed when a matrix changes its content. To do that, they register

themselves as listeners of the matrix; when the matrix changes the matrix notifies them
with an event.

Listeners

Listener

Listener

changed

Listener

Listener

In the following picture we see how a function is connected to its input and output
matrices. The function originally register as listener to each of its input matrices. When
one of the input matrices changes its content, it sends an event to the function. When this
happens the function recalculates and changes directly the content of its output matrices
(no observer/notifier event here: the function knows its output matrices).

The matrix ﬁas changed

Function

The function has been recalculated:
change the output matrices

If a presentation is registered as listener of a matrix, because the matrix is included in
the presentation, when the matrix changes its content the presentation is notified and can
be updated.

The matrix hhs changed,
the presentation needs to change its content

e

If a chart is registered as listener of a matrix, because the matrix contains the data for a
series of the chart or for the labels of one of its axes, when the matrix changes its content
the chart is notified and can be updated.

The matrix hhs changed,
the chart needs tochange its content

When a timer fires it triggers the recalculation of all the functions that are in its list.

Timer

The timer is fired,
each function in the list needs to be recalculated

Function

As a summary, it follows an example of the typical internal structure of a Matrex project:

The structure is a network of functions and matrices; the other items are on the limits
of the network because:

e presentations and charts only receive the matrices notifications

e timers only fire functions.

The functions calculation order

The order in which the functions are calculated can be difficult to establish, expecially
for big projects. A Matrex project can be configured to work with or without threads.

e If the project works with threads, it means that each function calculation is run
as a separate thread of a thread pool. In this case the order in which the

functions are calculated can vary and depends only by which matrices change
after each calculation.

e In a no-thread project, the order in which the functions are calculated is also
determined by the order in which the functions have registered themselves as
listeners of the matrices.

The API-GUI modules items connections

As we told, the API module is not dependent by the GUI module, it can potentially work
without GUI (for example with a command line program).

To keep the API module independent, the observer/notifier pattern is used also between
API and GUI: the GUI module acts directly on the API module (add, remove items, save
their content) and its editors, views and trees are notified when some items are changed:

| the machine content
V has changed (templates)

update
templates / projects
| the project content
v‘ has changed

Project GUI | Project
add/remove items

(matrices, functions)

the matrix has changed its content

Function Editor | Function
' save

n has changed

add/remove
items

the chart has changed

save

| Timer

save

eProject GUIs (in the main window of the desktop application) update projects adding,

updating and deleting items; they are notified when items are added, updated or deleted.
In this way the project GUIs are correctly updated if the project is shared.

eMachine GUIs (in the main window of the desktop application) update matrices
adding, updating and deleting templates; they are notified when templates are added,

updated or deleted. In this way the machine GUIs are corrected updated if the machine is
shared.

eEditors for matrices, functions, presentations, charts and timers save (or anyway
update) the content of the related items in the API.

e Viewers for matrices, presentation and charts register as listeners to the related items
when they open and are notified when the items are saved or updated, to show the
changes.

How the API module uses the Functions library

The API module does not have any reference to the Functions library. That gives the
possibility, for example, to use a library with different functions together with or instead
of the given one.

The API module is able to load the Functions library classes and to call them because the
templates descriptions files contain references to the classes (name+package).

So, since the Matrex engine reads these template description files when it starts, the API
knows which classes to call when a function needs to be calculated.

Functions
library

B F1

API

T = template, F = function code

	Matrex Internal Structure
	Introduction
	Global structure
	The API module
	The API module items connections
	The functions calculation order
	The API-GUI modules items connections
	How the API module uses the Functions library

