Matrex Internal SQL (ISQL)

Table of Contents

Matrex Internal SQL (ISQL)...ueiiiiiiiiieiieeee et e e e e e e eaareee s 1
INETOAUCTION.eiiieiiiiee ettt e e e e e e e et e e e eeataeeeeeataeeeeeasssaeeeensaeeeeeannnnnes 1
FATSE LOOK. ..ctiieiteee ettt e et e e e et e e e e aba e e e e s abaeeeeasaeaeeessaaaeeaaeeeaaaaens 2
LAIIEATIONS. . vtiieeeee ettt ettt e e e e e ettt e e e e e eeeettabaeeeeeaeeeeeasbaasareaeeeeaannsetsbenaneeeas 3
QUETY SYNEAX.ceeuttieeiiieeiieeeiteeeiteeetteestteesteeesateestaeessaeesaseeeeasaeesasaeesssaeesesnnssreeeesannnsssneeens 4
SELECT CLAUSE......ccoeiiiiiiiieeee ettt ettt e e e et ee e e e e e eeeeeeeaaeeeeeeeesssraaaananns 4
FROM CLAUSE......uuvtieiiieieeiciiitieeee e e e eeettte e e e e e e e ettt e e e e e eeeeettaaaseaeaasasaaaaaaaaassssssssssssnnnnnnns 5
WHERE clause (Optional).........coocuieiiiiiiiiieeiieeeiteeeite ettt e e s 5
ORDER BY clause (Optional).......ccccueeiriiiiiiiiiiieiiieeeiceetce ettt 6
GROUP BY clause (OPtioNal).......ccccueieriieeriieiiieeiiee ettt sire et eeseveeee e 6
Some additional INfOIrMALION.eeeieiiiieeiiiiiiieeeeeeeeccctreee e e eeeeeetrereeeeeeeeesrarreeeeeeeeeeennnnns 6
2 21111 o) (PSSP 7
QUETY Lttt ettt e et e e st e e st e e abeeesabbaeeeeeeeaneees 7
QUETY 2.ttt et e ettt e e ettt e e e et e e e e ataeeeseabbteeeenbbeeeennnbaeeeeeaaeanannnnnnnnes 7
L0115 o0 T PP P RO PPPPRIRP 7
Introduction

I always described Matrex as equivalent to a spreadsheet application (Excel, Calc...).
With the Internal SQL template Matrex goes a step forward.

Imagine that you have written an Excel sheet organized in columns (like in a table of a
database). To organize a sheet in columns is normal when working with big amount of
data, for example if you got your data from a database or from a feed.

What can you do on this data? It is a good assumption that you will search on them with a
lookup function, add new columns with calculated values, summarize them or sort them.

And you will do this applying several formulas on cells, columns, rows.

Think if instead you can use SQL on these columns. Instead of writing thousand of
formulas (because there are thousand of cells), so that your sheet will be unreadable to
anyone else than you, you can apply a single SQL query on them and obtain exactly what
you want.

Less work time, simpler sheet. And if you want to make some changes, there is a good
probability that you need to change only the SQL query.

I don't know of anything like that in Excel. Excel works typically by cells, not by vectors.

But Matrex has it. It is called Internal SQL.

First look
ISQL (which means Internal SQL) is a Matrex function template.
You can find it in the templates tree with path sys.sql and name isql.
The input arguments are:

e the SQL query, in form of a text parameter.

e the matrices that will be handled as table columns by the SQL query. They need
to have only one column, in practice to be vectors.

The output are the matrices (also vectors) that are the resulting values of the SQL query.

The following picture gives an example of function built with this template:

al a2

select a.al as c1, b.b2 as c2
from [a1,a2] as a, [b1.b2] as b
where a.a2 = b.b1

In the figure:

The name of the input and output tables are the name of the matrices in Matrex,
excluded the path. This means that a matrix called financial.calc.rent is just
considered rent by the template.

The SQL is similar to the one we use to query a database, but the from clause is
different. Since in Matrex there are no tables (it is not a database), we build our
tables in the SQL query itself. [fal, a2] as a in the from clause means that the two
input matrices al and a2 become the columns of the table a. In the rest of the SQL
query al and a2 are always mentioned as a.al and a.a2 (it is not possible to use
the column name without the table).

The output matrices cl and c2 are the results of the query. They are the aliases
(as ...) in the select clause of the query.

Suppose we made a function from the ISQL template applying the parameters in the

figure. When we call the function:
1. The SQL query is parsed, building an internal structure. If it contain errors the
call is stopped and the errors are returned.
2. The input matrices are applied to the query internal structure.
3. The output matrices are filled with the return values of the query.
Limitations

The SQL dialect to write the queries is not standard. These are the differences:

The FROM clause is used to build the tables to query, using the input matrices

(like in the example we saw before, [al, a2] as a).

All input columns have to be written as <tableName>.<columnName> (as a.al
and b.b2 in the figure), everywhere in the SQL query. To write columnName
without tableName is an error.

You need to set an alias (AS ...) for each output value in the SELECT clause. This
is needed to connect the results with the output matrices.

Only aggregate functions are allowed in the SELECT clause, in the WHERE
clause no functions at all are allowed. Operators (+,-,%,/,%) are allowed.

e No sub-queries are allowed.

e Only SELECT, FROM, WHERE, ORDER BY, GROUP BY clauses are
available.

e The LIKE operator works on regular expressions. Therefore don't write LIKE
inter%' but LIKE 'inter.*'" .

We have these limitations because:
e Queries are not run against a database, but vectors in memory.

e This is the first version of the template and reliability was preferred to
completeness.

It is not excluded that in future versions some of this limitations will be removed.

Query Syntax

For who wants to understand precisely the SQL used for these queries, there is a grammar
file, called MatrexSelect.g. This file is included in the Matrex distribution.

Here I give a more human readable explanation.
The query is in the following form:

SELECT <expressionl> as <aliasl>, ... <expressionN> as <aliasN>
FROM [<columnl_1>, ... <columnN_I>] as <tablel>, ... [<columnl_M>, ..
<columnP_M>] as <tableM>

WHERE <conditionl> [ANDIOR <condition2> ... AND|IOR <conitionN>]
ORDER BY <columnl>, ... <columnN>

GROUP BY <columnl>, ... <columnN>

and composed by the following parts:

SELECT clause

The SELECT clause contains the result values of the query. There must be an alias (AS)
for each value field.
Each result value can be:

e atable column
® a constant

e an operation (+, -, *, /, %) between two expressions

e an aggregate function (SUM, AVERAGE, MAX, MIN) Other functions (exp,
log, ...) are not implemented. If you need to apply a function to an input or output
matrix you can do it in Matrex outside the ISQL template, with the other
templates of Matrex.

e a CASE expression:

CASE <column>
WHEN <column> = (or another operator) <constant1> THEN <expression]>
WHEN <column> = (or another operator) <constant2> THEN <expression2>

ELSE expressionN
END

In each WHEN condition you compare the column (always the same column)
with a constant (constantl, constant2...). When one of the WHEN condition is
true, the result value is set to the THEN expression. If none of them is true, the
result value is set to the ELSE expression.

FROM clause
The FROM clause contains the definitions of the tables.

Each definition is in the form [<columnl>, <column2..>] AS <table>, like in the query in
the figure.

All columns in a table need to be of the same size. If they have different size, you can

distribute them in two or more tables and join them using the WHERE clause.

WHERE clause (optional)

The WHERE clause is, as in the standard SQL, a set of predicates connected by AND
and OR.

Each predicate is in the form:

e acomparison between two expressions, using standard operators (=, <>, <, >) .
We saw an example of it in the figure query.

e acomparison between an expression and a regular expression, using the LIKE
operator. For example:

WHERE a.al LIKE 'inter.*'

to search all the a.al values that start with 'inter'.

e an IN clause: <expression> IN (<constant]1>, <constant2>..., <constantN>). For
example:

WHERE a.al IN (10, 12, 16 34)

to accept only values of the column a.al that are in the given list
An expressions in the WHERE clause can be:
e atable column
e aconstant

e an operation (+, -, *, /) between two expressions

ORDER BY clause (optional)

As in the standard SQL, the ORDER BY clause consists of the columns by which the
query result has to be sorted.

It is in the form:

ORDER BY <columnl>, <column2>, ... <columnN>

GROUP BY clause (optional)
Also the GROUP BY clause is the same as in the standard SQL.

When you have some aggregate function in the SELECT clause (SUM, AVERAGE...) all
the columns in the SELECT clause that are not parameters of the average functions must
be mentioned in the GROUP BY clause.

The GROUP BY clause is in the form:

GROUP BY <columnl>, <column2>, ... <columnN>

Some additional information.

Constants can be of 4 types, like the matrices in Matrex:
e Texts. They need to be surrounded by single quotes (‘example')
e Numbers.

e Dates. They need to be surrounded by sharp characters and written as ISO dates
(#2007-10-11#).

e Booleans. They need to be written as true or false.

Examples

These are some query examples (used to test the system):

Query 1
This query uses a CASE expression to return different values depending by the price.fix

value and orders the results by price.ticker.

select price.ticker as ticker,

case price.fix when price.fix > 20 then 2 when price.fix > 13 then 1 else 0 end as byfix,
price.ask * price.fix as askfix

from [ticker, fix, ask] as price

order by price.ticker

Query 2
This query uses a LIKE expression to select only the rows with ticker starting by EZPM.

select price.ticker as ticker,
price.fix as sumfix

from [ticker, fix] as price

where price.ticker like 'EZPM.*'

Query 3
This query joins the tables product and price in the WHERE clause.

select product.productticker as ticker,

product.delivery as delivery,

price.fix as fix,

price.ask as ask

from [productticker, delivery] as product, [ticker, fix, ask] as price
where product.productticker = price.ticker

	Matrex Internal SQL (ISQL)
	Introduction
	First look
	Limitations
	Query Syntax
	SELECT clause
	FROM clause
	WHERE clause (optional)
	ORDER BY clause (optional)
	GROUP BY clause (optional)

	Some additional information.
	Examples
	Query 1
	Query 2
	Query 3

