The Matrex Client/Server Specification 1.1

Table of Contents

The Matrex Client/Server Specification 1.1........ccoccoooiiiiiiiiininiiice e 1
INETOAUCTION. ...ttt ettt et b e et esab e e bt e s bt e et e e sateebaeeeans 1
A USAZE SCEINATIO. ...eeeutieeeiiieeeiiteesieeesiteeestteeesiteeesateeetteestteesssbeesasteesaseeesabaeesannsssaeeeessnnnnseees 2
INEW PIOJECT. ettt ettt ettt ettt e ettt e et e et e e sat e e st e e bt e e sabbteeeeeeanebaeeeaeas 4
(001531 1801 10 [PO USRS PRPPPRPN 5
Recently USEd PrOJECES.eovuiiiiiiriiiiieriieee ettt 6
IMIOTIVALIONS ...ttt ettt et e eh e et e bttt e bt e e ab e e be e eabeebeesabeebeeeeabbeeesnneeeeans 6
REQUITEIMENLS. ..ottt ettt e e e sttt e et e e e e e aabbee e e e e e aeeeee 7
Client/Server arChifeCTUIE.cocueiiiuutiiiiieeiee ettt ettt e e et e e e e e e eiaeeeees 7
Client/Server COMMUNICATION.cccutertteiieniieetee e etee ettt ettt e st et e seabee e e snteeeesaneeees 11
Communication protoCol ChOICE.........ccuiiiiiiiiiiiiericeeeeeeee e e 11
ST T 01 TS o] o [T £SO PUPPPR 12
The ServerAccess business ODJEC.......ccivviiiiiiiiiiiieiieeete et 14
The Server BUSINESS ODJECL.....ccutiiuiiiiiiiieiieete ettt ettt e e 14
The usage scenario as Client/SErVer INtETACION.cevuveerrireeriieeeriieerieeeraeeesreeesireeeeeaaens 14
BIUINE. ottt ettt ettt e et e e e 15
TTANSACHIONS. ...ttt ettt ettt e sb e st e bt e et e sbb e et e e sae e e bt e sbbeeeseabteeeennnee 16
Messages: 1ocal and TEMOLE.......ccouuiiiiiiiiiiieeiieeeiieeeee ettt e e e e e e e e 17
Remote asynchronous MeSSAZING.........ceeruuieeriieeriieeiieeeiieeeiieesieeesieeesreeesesssnrreeaesesnnnnns 18
MESSAZES TOTTNAL.....coutiiiiiieiiiie ettt e et st e e st e e sttt e e e e e sanabreeeeeaennns 19
Copying projects in the NEIWOTK.........ccoiiiiiiiiiiiiiie e 20
SEOUTTLY .ttt ettt e et e ettt e st e e s bt eesabeeessbeeeabeeessbeesnnbeesnnsbbeeeessennnnsaeeas 21
CONIGUIALION. ...ttt ettt e e et e e sanneees 22
Introduction

Since Matrex was born it was clear that it had to become a client/server system, even if
this feature is not present now.

You can note this from its interface: the project trees are contained in a tab called local or
localhost, which makes sense only if in the future there will be other tabs with different
servers addresses or names.

The fact that Matrex works with raw granularity (blocks or matrices instead of cells)
makes it a natural choice to make it evolve to a client/server system: to exchange a small

amount of big packages (matrices) rather than a big amount of small packages (cell

values) is a better use of the network and makes the applications faster and more

responsive.
Now it is time to implement this new feature, and make it available in Matrex version 2.0.

Before we start to analyze the client/server architecture, let's give a look of how a Matrex
2.0 user will use the new feature.

A usage scenario

The user opens Matrex as usual. The GUI looks the same as now:

Malres 1.2 Desklop

Eile Scripts Help
local
(= | Machine lacal

Time Sourci| Message (<]
) Machir Project fhomefandrea/pr)/matrexprojectsfsample/pr

05:39:1 Machir Dpening project fhome/andreafpriimatrexprojects/s:

05:34: Machir Project thomefandrea/priimatrexjprajects/projection/ |~ |
iy I2]

The user opens the File menu:

Matrex 1.0 Desktop
5 Help

& Open project
4 Connect
B SUI Settings

Scripts

local - fhomejandrea/prifmatrex/test/project. mxp
144.123.13.44/test - popcolorado

144.123.13 44/prod - projection
144.123.12.11/john - futures

local - fhome/andrea/prifmatrex/testdb/project. mxp

E] Functions

Here there is a new menu, called Connect.

Connect allows to connect to a Matrex server in another PC. It opens the following
dialog:

Connect to a Matrex Server

Server Network Address: [144_12?_33_12 E] Connect

Select a Matrex Server:
default Open Server

optimimization

balance

The dialog has a combo box to write the address of the PC to which you want to connect
or select this address from a list of PCs to which you connected in previous sessions.

Once the address is selected press the Connect button.

Since each PC can host several Matrex server, you get the list of Matrex servers
available at the selected address.

Select one of them and press the Open Server button.

If the server has security activated, at this point you need to log in.

Login to 144.127.33.12/balance

User Id: [giacumo]

Password: [*******]

If the login has been successful, a the machine tab for the server is added to the main
GUI:

Time | Sourci Message [

0%5:39: Machir Opaning project fhomaefandrea/pry Jpropacts)

05:34: Machir Project fhomefandreaiprymatrexprojectspropctiony s |
o)

The new tab works in the same way as the local tab, but opening the templates window in
this tab you see the templates of its server and opening a project in this tab means
opening a project on its server.

Then let's see what happens when we can create or open projects in the server.

New project

To create a project you click as usual on the New project menu.

The New Project dialog that appears is the usual one:

New Project

4 Enter the name of the new project.

Thizs will be the name of the directory
containing the project files.

Project name: []

¥ Cancel

But, after you entered the name and pressed OK, the dialog to select the project base
directory does not appear. This is because on a server the projects are all saved in a

specific directory, so only the project name is needed.

A project tab for the new project appears and you can start to work with it. The project
behaves exactly like a local one, if you don't count some performance difference because
you are working remotely,

Open project
To open a project click as usual on the Open project menu.

We already told that the projects on a server are all saved in a specific directory; so,
instead of the dialog to select the project file in the file system, a list of the available
projects in that server is displayed:

Open project in server 144.112.33.

money
chemical

income

Open Cancel

Selecting a project a pressing Open, the project tab is added to the server tab and you can
start to work with it.

Recently used projects

We repropose here the File menu picture:

"3 Matrex 1.0 Deskiop
&= Scripts Help

= Open project
‘4 Connect
E5' GUI Settings

local - /home/fandrea/prifmatrex/test/project. mxp
144.123.13 44/test - popcolorado
144.123.13.44/prod - projection
144.123.12.11/jchn - futures

local - fhome/andrea/prifmatrexitestdb/project. mxp

[Z] Functions

In the list of recently used projects there are two kinds of projects:

e local projects. the projects that are located on the client's PC. They are described
by the word local followed by the name of the project.

e remote projects. the projects that are located on a server. They are described by

the pair server address/server name followed by the name of the project.
Clicking on a remote project the client will:
e Connect to the project's server.
e Add the server machine tab if needed .

e Add the project tab in the server machine tab.

Motivations
Why should someone connect to a Matrex server? The reasons are:

e To share the projects. Two or more persons will be able to work together (in the
same time or separately) with one project located in a server. Matrex guarantees
consistency when working together on the same project in the same time.

e To not use your PC resources to calculate the projects functions and instead use
the resources of a server.

e To improve the performance of the project functions calculation. It is possible

for several reasons that a server is faster than your PC (better CPU, java
optimization for server applications).

For other purposes (publish a project on the internet, send a project to other people) other

tools should be used.

Requirements

These are the requirements that Matrex client/server must satisfy.

Speed: people need to work with shared projects in the network with

performances comparable with local projects.

Simplicity: to install a Matrex server and to connect to it should be tasks that

anyone with some minimal computer knowledge is able to do.

Security: a minimal security infrastructure, but nothing that goes against the
simplicity requirement. The client/server architecture is supposed to work on a a
LAN, not on the internet.

Minimal setup file impact: the size of the setup file must remain around the 15
MB.

Work in a LAN: client and server must reside both in the same LAN. The Matrex
server must not be a web service exposed in the internet. This would be against
the speed requirement. Therefore firewalls and proxies issues are not handled.

Optional: the fact that Matrex will be client/server does not mean that you'll need
to connect to a Matrex server to work. You will still be able to use Matrex as a
standalone application, in the same way and with the same performances as today.

Client/Server architecture

The following picture shows the current structure of a Matrex desktop application in

terms of modules:

Matrex API

The Matrex API module handles all the items of Matrex (projects, machines, matrices,
functions, presentations, charts, timers). It is the engine of Matrex (it can be used without
the GUI, see the Matrex API document).

The Functions code (or, better said, function templates code) module contains the

algorithms to calculate the functions contained in the projects.

The Matrex API module uses the Files module to read and write all the needed files (files

describing projects, matrices, functions, presentations, charts, timers).

The GUI module handles windows, dialogs and everything that has to do with the
graphical user interface. It shows and edits projects, matrices, functions, presentations,
charts and timers handled by the Matrex API module.

With Matrex 2.0 this structure evolves: the applications are two (Client and Server), but
there are only two modules more:

Matrex Desktop/Client

Matrex Server

Matrex API Client

module

Matrex API

e the Server module, which accepts connections and publishes the projects so that
they can be accessed remotely.

e the Client module which connects to Matrex servers and acts as a proxy, making
remote projects accessible as they was local.

The other modules (Matrex API, GUI, Files, Function code) need a limited amount of

changes to adapt to the new architecture. For example:
e The GUI module needs the new dialogs to connect to a server.

e The Matrex items (projects, matrices, functions...) need some abstraction to be
used both locally and remotely.

The following picture shows an example of the use of Matrex desktops/clients and
Matrex servers in a LAN:

Workstation A
Matrex S .
desktop \ erver computer
Workstation B
Matrex
desktop
Server computer B
Workstation C
'
Mat .|
desktop
Project A
Workstation D
Matrex
desktop
| Project A |

Here we have examples of:

e projects used remotely by only one client (project A in server A, project B and C

in server B).
e shared projects (project A in server B).
e clients that use only remote projects (workstations A and B)
e clients that use only local projects (workstation D)

e clients that use both local and remote projects (workstation C)

Client/Server communication

The interaction among Matrex clients and servers are of two types:

Client's synchronous requests to the server. For example the client opens a

project in the server, loads a matrix to view it or edit it.

Asynchronous messages from the server to the client. For example the server
notifies the client when the content of the project changes or when a viewed
matrix changes its content, so that the client can show the changes.

Communication protocol choice

Looking at the requirement and the kind of communication between client and server it is

evident that we need a communication protocol that guarantees:

Fast objects serialization/deserialization.
Fast messages sending/receiving.

Synchronous and asynchronous communication (or at least one library for

synchronous communication, one for asynchronous).
Easy to install. Anyone must be able to install a Matrex server and connect to it.
Easy to program.

Small size library.

We don't need instead:

Language independence. The library that implements the protocol just needs to be
available in Java.

To send messages through firewalls. The client/server connection is inside a LAN.

So, of the available protocols we discard:

SOAP (or REST) because it is slower than other protocols since it is based on

XML; on the other side we don't need to send messages through firewalls.

CORBA because it is relatively difficult to program and we don't need language

independence.

JMS because it is relatively difficult to install (you must have a JMS broker) and

generally the library implementing it is not small.

e Jini is not right for this purpose: Matrex servers are a few, in specific locations,
all giving the same services (exposing projects) and don't need to synchronize
their code.

The chosen protocol is RMI. RMI is not really the newest protocol available (it was
available in Java 1.1 and did not change so much since then) but:

eit is easy to program
eit is easy to install (you just need to start the RMI registry server)
eit is included in the JRE (library size = 0)

eit is able to handle synchronous messaging and a primitive asynchronous messaging
(trough callbacks).

eit is based on the Java object serialization/deserialization, which is very fast.

If I could install the servers myself I probably would choose RMI for synchronous
messaging and JMS for asynchronous messaging (because it is very reliable and
complete), but since the user needs to install it himself, RMI should be good enough for
both purposes.

Business objects

Now that we decided the protocol, we need to model server and client to communicate

through it. In other words we need to give a structure to our client and server modules.

RMLI, like CORBA, structures the systems in business objects (the classes that give
services) and messages (the objects serialized and sent through the network).

So, let's decide:
ewhat are the business objects and their relationships.
ewhat are the messages.

As told before, Matrex has already been structured for this purpose, so the choice is not

difficult. To know more about that, read the document about the structure of Matrex.

Let's give a look to the business objects:

contains

ServerAccess

+getServerBylLogin ()}

+getServer()

dCCES5es

Server

+getTemplates ()
+addTemplate ()
+listProjects()
+openProject ()
+copyProjectTo()
+copyProjectFrom()

pubKiEhes

contains

—

Template

Mafrix

FumI:tion

Presentation

Chart

Timer

They are very similar to the main classes we have now in the Matrex desktop (you can
look at the Matrex internal structure document).

Clearly there must be some differences, which are given essentially by two of the
business objects.
The ServerAccess business object

If the security in the server is active, the client can access the server content only after its

user logs in.

This is guaranteed by the ServerAccess business object, which returns the reference to
the Server business object as result of a method call.

e If the security in the server is active the client needs to call getServerByLogin
with userid and password to obtain the reference to Server.

e If the security is not active a call to getServer without parameters is enough.

Calling getServer when the security is active gives an error.

ServerAccess is the only business object of the server that is registered in the RMI
registry. So, if you want to use the server, you need to pass through ServerAccess.

The Server business object
ServerAccess returns a reference to the Server business object.
Server is a specialization of Machine, which has a special method, called listProjects.

ListProjects returns the list of the available projects in the server (which are stored in a

specific directory in the server computer).

Since we specialized Machine with Server, Machine will become an abstract class. The
Machine used locally in the Matrex desktop will be another specialization of Machine
called LocalMachine.

All the other business objects (project, template, matrix, function, presentation, chart,
timer) are the same as today in terms of functionalities.

The usage scenario as client/server interaction

So, if we go back to the usage scenario, in which the client opens a project in a server,
this is what happens from the point of view of the client and server processes;

e When the user gives the ip address of the server computer, the client contacts the

RMI registry server on that machine.

e The RMI registry returns a list of the registered Matrex servers (in general the

Matrex servers available on that server computer)

e When the user selects one of the Matrex server, the client obtains from the
registry the RMI reference to the (unique) ServerAccess business object of that
Matrex server.

e The client obtains a reference to the Server business object either directly or by
logging in (if the security is active),

e The client gets the list of templates available in the server (getTemplates) as RMI
references.

e From the Server business object the client is able to get the template tree and a list

of the projects available in that Matrex server (as names).

e When the user selects one of the projects from the list, the client calls the Server
openProject method with the selected project name, obtaining the reference to the

Project business object for that project.

e From the Project business object the client gets the list of RMI references to all
the project items (matrices, functions...). From these the client builds the trees in
the project tab.

Editing

We have to be careful about the editing functionality.

It is not possible to have two clients editing the same item (matrix, presentation,
function...) of a project at the same time. To allow this would cause inconsistencies, for

example at the end of the editing the item would be as one of the client saved it, with all
the changes entered by the other client discarded.

Therefore only one client can edit an item of a project at one time. Only when the client
terminates the editing, the item can be edited by another client.

To enforce this feature, the server keeps track of who is editing what. This feature can be
maintained by the edit table [item id -> client that is using it]. In this way:

e When a client starts to edit one item, every client is notified. In the desktop
application the message appears in the messages view.

e When the client closes the editor for an item the server notifies every client. The
item is removed from the edit table and becomes available for editing.

e When a client tries to edit one item that is already in edit state, it gets an error.

e To avoid that, when a client crashes, the items it started to edit remain unavailable
for the other clients, the system uses a lease protocol, available in RMI.
A client that implements the lease protocol has to periodically notify the server
that it is alive. If the server does not receive this notification for a certain period, it
assumes that the client crashed and removes all the references to it from the edit
table, so that the items it was editing become free.

Transactions

There are cases in which the client has to do a series of operations on a project that

cannot be interrupted.
Here are examples of these cases:

e Creation of a function. The creation of a function implies also the creation of all
the matrices result of the new function.

e Creation of functions/matrices with the Expression Parser. At the end of the
expression parser wizard several functions and matrices are created together. They
are dependent by each other.

e Simple refactoring of the project. Operations on the project that imply for
example multiple items movements.

These are typical transactional operations: either the whole series of operations is
applied to the project or, if an error or any kind of problem occurs in doing it, nothing
has to be done.

To have a transactional behavior, when:

ethe function with its result matrices is saved

ethe functions and matrices created by the Expression Parser are saved
ethe project items are moved

and in general when the client start saving any kind of item in the project (also simple
items like matrices), the client acquires the control on the project in the server. This
means that the server adds to the edit table a pair [project id -> client that wants to apply
the transactional operation].

Once the client is finished to save the items, it gives back the control on the project and

the server removes the pair from the edit table.
Note that:

e If a client tries to acquire the control on a project that is already in edit state it has
to wait until the project becomes available.

e The save operations should be always structured in the following way:
e acquire the control on the project

e check if it is possible to save (for example there are no matrices with the
same name/path of any that is supposed to be saved in this operation). If
not, try to save in a different way (other name/paths?). If nothing works,
abort the save operation and release the control on the project.

e If everything is fine, save.

e release the control on the project

Messages: local and remote

The business objects remain always in the server: they are never sent as RMI messages.

The clients access their content through their methods.

This means that all the messages and calls among various Matrex items (projects,

matrices, functions...) are local to the server.

For example, when the content of a matrix changes and the matrix is part of a
presentation, the matrix notifies the change to the presentation locally in the server.

The client is notified of the changes only if it has a viewer open, showing a matrix or a
presentation contained in the server.

Here we show a client with 3 viewers open (matrix, presentation, chart). The viewers are
notified when the related matrix, presentation, chart content are changed. Also the trees
of the project tab are notified when an item (matrix, function...) is added, deleted or
updated.

On the other side, you can see that all the other notifications are performed internally in
the server, which means that the network traffic is limited: in general only a few viewers

are open in the same time in a client.

In the picture the red boxes in the server are matrices, the brown is a presentation, the
green is a chart and the blue is the project.

Remote asynchronous messaging

RMI handles the asynchronous messaging using callbacks: the client object that needs to
receive asynchronous messages subscribes to the server object using its own RMI
reference. From that moment the server object calls a specific method of the client object

each time it has to notify something to it.
This means two things:

e The client object becomes an RMI business object and each time the server object
notifies something the two objects in a certain way invert their roles (client
becomes server, server become client).

e The RMI callback mechanism is perfectly compatible with the notifier/listener
pattern used by Matrex for the internal asynchronous messaging.

Now the questions are:
e Which kind of messages the server sends asynchronously to the client?

e Which are the objects in the client that are notified by the server through
callbacks?

e How we implement the callback subscription mechanism in the server objects?
The messages are the same sent internally in the Matrix desktop:

e matrex.item.events.matrix.MatrixEvent when the content of a matrix changes.

matrex.item.presentation.attributes.PresentedAttributes ,
matrex.item.presentation.object.IPresentedObjectData when the content of a

presentation changes.
matrex.item.events.chart.ChartEvent when the content of a matrix changes.

matrex.item.events.project.ProjectEvent when the content of the project
changes (items have been added, deleted, updated).

matrex.item.events.machine.MachineEvent when the content of the server

changes (templates have been added, deleted, updated).

The client items notified asynchronously by the server are all the client viewers and the

trees in the main GUI. So, at a first look we will have:

matrex.gui.viewer.matrix.MatrixViewerCache for the matrix messages

matrex.gui.viewer.presentation.PresentationCache for the presentation
messages

The various classes implementing

matrex.gui.viewer.chart.datalDatasetAdapter for the chart messages

matrex.gui.TemplateGUI for the machine messages (changes in the template
structure).

matrex.gui.ProjectGUI for the project messages.

The callback subscription mechanism in the server business object is exactly the same

that we use now internally in Matrex. The addListener/removeListener methods can

accept both local and remote listeners.

Messages format

At least in a first stage, when an item changes, its complete content will be sent to the

subscribing clients. This means that, for example, if only one cell of a matrix changes,

the whole matrix content is sent in the message.

The reason of this decision are:

e maintain the implementation simple and therefore reduce the problems.

e it is not told that sending only the part that changes is faster: the code to verify what

changed could be slow and the size of the “delta” message (that contain the coordinates

of the changed cells together with their values) could be not so much smaller than the

size of the “complete” message.

e in general the cases in which only a small portion of a matrix or presentation is
changed are not common. The Matrex algorithms act generally on the whole matrix and
the use of Matrex is really convenient when big portions of the matrices are changed.

Since we are using RMI, the messages will consist of the event objects that we saw

previously, serialized using the common Java binary serialization.

The general alternative, to use XML messages, is discarded because of the performance
penalization involved in parsing XML; for the same reason we discarded SOAP as a
protocol.

Copying projects in the network

Projects are in the server, the client accesses them through RMI, everything works fine.
Yes, but how did the projects end up in the server?

Every server machine tab in the GUI has a menu to copy project to or from that server.
When the user decides to copy a project to a server:
e The user clicks on the copy to menu of the server tab.

e He selects the project using the Open project dialog. He cannot copy to the server
a project that is currently open in the client.

e The client zips the whole project directory in one single byte array (Matrex is
already able to zip projects).

e The client calls the server copyProjectTo method with the zipped project.
e The server unzips the project in its own projects directory.

e The project is saved and can be used remotely.

It is also possible to copy a project from a server to the client machine, so that it can be
used locally by the client. To do that:

e The user clicks on the copy from menu on the server tab.
e He selects the project from the projects list dialog seen in the usage scenario.

e The client calls the server copyProjectFrom method for the selected project.

e If the project is currently used by one or more clients the method returns an error.
e Otherwise, the server zips the project in a single byte array and returns it.

e The user needs to select the directory that will contain the project using the Save
Project dialog.

e The project is saved and can be used locally.

Security

We decided to keep the system as simple as possible, and that has a cost, especially in
terms of security.

Since Matrex is supposed to work in a LAN, the assumption is that the level of security
can be low. This guarantees that the system is easy to install and maintain.

A Matrex server can have the security active or inactive.
e If the security is inactive anyone can access that server without login.
e If the security is active each user has to login to access that server.

Once you can access a server you can do what ever you want: open a project, copy a

project from and to the server.
To make the security active, the server is started with the passwordfile option:
java -cp matrex_server.jar;... matrex.server.ServerStart -passwordfile=password.xml ...

This file password.xml contains pairs user-password, where the password are encrypted.

To add a new pair user-password in the password.xml we make a special class/command,
for example PasswordAdd:

java -cp matrex_server.jar;... matrex.server.PasswordAdd -passwordfile=password.xml

<user> <password>

where <user> and <password> are the user and password to add.

At least in a first stage, it will not be possible for a user to change his password from the
client.

A last word about security: the messages exchanged in the network are not encrypted.

Configuration

To start the server, as we saw in part speaking about the security, the command should be
more or less that one:

java -cp matrex_server.jar;matrex_api.jar;matrex_fun.jar matrex.server.ServerStart

-projectdir=<project directory> [-passwordfile=<xml password file>]

where:

e matrex_server.jar is the library containing all the server classes, included
ServerStart

e matrex_api.jar and matrex_fun.jar are the two other libraries needed for the server
to work.

e matrex.server.ServerStart is the class that contains the static main method.
e <project directory> is the directory containing all the server's projects.

e <xml password file> (optional) is the xml file containing the user-password pairs
if the server security is active.

	The Matrex Client/Server Specification 1.1
	Introduction
	A usage scenario
	New project
	Open project
	Recently used projects

	Motivations
	Requirements
	Client/Server architecture
	Client/Server communication
	Communication protocol choice
	Business objects
	The ServerAccess business object
	The Server business object

	The usage scenario as client/server interaction
	Editing
	Transactions
	Messages: local and remote
	Remote asynchronous messaging
	Messages format
	Copying projects in the network
	Security
	Configuration

